Electronics \& Communication Shoubra Faculty of Engineering Benha University	Assignment No (2)	DSP (2014)

1. Which of the following system is linear:
a) Differentiator $\mathrm{y}[\mathrm{n}]=\frac{\mathrm{dx}[\mathrm{n}]}{d n}$
b) Amplifier $\mathrm{y}[\mathrm{n}]=5 \mathrm{x}[\mathrm{n}]$
c) Square time $\mathrm{y}[\mathrm{n}]=x\left[n^{2}\right]$
2. Consider two DT systems with the following input-output relationships:
a) $y[n]=x[n]+2$
b) $\mathrm{y}[\mathrm{n}]=\mathrm{kx}[\mathrm{n}]$

Determine if the systems are time-invariant.
3. For a DT linear, time-invariant system, an input $x[n]$ produces an output $\mathrm{y}[\mathrm{n}]$ as shown in Figure. Sketch the outputs for the following set of inputs:
a) $x[-n]$
b) $2 x[n-1]$
c) $x[n+1]-x[n-1]$

4. The output $\mathrm{h}[\mathrm{k}]$ of a DT LTI system in response to a unit impulse function $\delta[\mathrm{k}]$ is shown in Figure. Find the output for the following input: $\quad x[k]=\delta[k+1]+\delta[k]+\delta[k-1]$

5. Find $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]^{*} \mathrm{~h}[\mathrm{n}]$, where:
$x[n]=u[n]-u[n-3], h[n]=u[n]-u[n-5]$, determine the convolution duration.

